Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 16963, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216851

RESUMO

Human-robot interaction technology has contributed to improving sociality for humanoid robots. At scales far from human scales, a microrobot can interact with an environment in a small world. Microsensors have been applied to measurement of forces by flying or walking insects. Meanwhile, most previous works focused on the measurement of the behavior of insects. Here, we propose microrobot-insect interactions by soft microfingers integrated with artificial muscle actuators and tactile sensors, which has been developed for a haptic teleoperation robot system. A soft pneumatic balloon actuator acts as the artificial muscle, and a flexible strain sensor using a liquid metal provides tactile sensing. Force interaction between a pill bug and the microfinger could be accomplished. The microfinger (12 mm × 3 mm × 490 µm) can move and touch an insect, and it can detect reaction force from an insect. The measured reaction force from the legs of a pill bug as a representative insect was less than 10 mN. This paper presents a microfinger as an end effector for the active sensing of reaction force from a small insect. We anticipate that our results will lead to further evaluation of small living things as well as technology development for human-environment interaction.


Assuntos
Robótica , Percepção do Tato , Animais , Humanos , Insetos , Fenômenos Mecânicos , Tato
2.
Micromachines (Basel) ; 12(4)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918399

RESUMO

Motion capture of a robot and tactile sensing for a robot require sensors. Strain sensors are used to detect bending deformation of the robot finger and to sense the force from an object. It is important to introduce sensors in effective combination with actuators without affecting the original performance of the robot. We are interested in the improvement of flexible strain sensors integrated into soft microrobot fingers using a pneumatic balloon actuator (PBA). A strain sensor using a microchannel filled with liquid metal was developed for soft PBAs by considering the compatibility of sensors and actuators. Inflatable deformation generated by PBAs, however, was found to affect sensor characteristics. This paper presents structural reinforcement of a liquid metal-based sensor to solve this problem. Parylene C film was deposited into a microchannel to reinforce its structure against the inflatable deformation caused by a PBA. Parylene C deposition into a microchannel suppressed the interference of inflatable deformation. The proposed method enables the effective combination of soft PBAs and a flexible liquid metal strain sensor for use in microrobot fingers.

3.
Sci Rep ; 11(1): 7048, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782452

RESUMO

Gallium alloy liquid metals (Galinstan) possessing fluidity, electric conductivity, and low toxicity are attractive for use in flexible devices and microfluidic devices. However, the oxide skin of Galinstan in the atmosphere adheres to the microchannel surface, preventing the transportation of Galinstan in the channel. To tackle the problem of the adhesion of Galinstan to microchannel, we introduced liquid with Galinstan into a channel with a diameter of 1000 µm. Then, we found that the cylindrical shape of the channel enabled smooth transportation of Galinstan independently of both the liquid and the channel material. The liquid introduced with Galinstan not only prevents adhesion but also improves the spatial controllability of Galinstan in the channel. We can control the position of Galinstan with 100 µm resolution using highly viscous (> 10 cSt) liquid. In addition, we combined the microchannel with patterned electrodes, fabricating a serially arranged capacitive device. The local capacitance detected by the patterned electrodes changed by more than 6% via the smooth transportation of Galinstan. The analysis results based on an equivalent circuit quantitatively agree with our experimental results. We can modulate the serially arranged capacitors using the smooth transportation of Galinstan in the channel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...